Control of action potential-induced Ca2+ signaling in the soma of hippocampal neurons by Ca2+ release from intracellular stores.
نویسندگان
چکیده
Stimulus-induced increases in neuronal Ca2+ concentration are important signaling events for transcriptional regulation and neuronal plasticity. Electrical inputs are thought to mediate Ca2+ responses in the soma by triggering action potentials, which in turn open voltage-gated Ca2+ channels in the somatic plasma membrane. It is not yet known to what extent internal Ca2+ amplification contributes to the somatic Ca2+ responses. Here we used fluorescent Ca2+ measurements in cultured hippocampal neurons and report that the amplitude of the somatic Ca2+ increase triggered by field stimulation is independent of the extracellular Ca2+ concentration as long as the concentration is greater than 50 microM. Furthermore, significantly more La3+ has to be added extracellularly for blocking Ca2+ responses, as predicted from the reported La3+ dependence of voltage-gated Ca2+ channels. These measurements suggest that field stimulation-induced somatic Ca2+ responses in hippocampal neurons are largely attributable to Ca2+ release from intracellular stores. Only a small number of Ca2+ ions have to enter across the plasma membrane for this intracellular Ca2+ amplification process to occur. Rapid fluorescence-imaging measurements showed that the internal Ca2+ amplification occurs over 10-15 msec and linearly increases intracellular Ca2+ concentrations for up to 40 action potentials. At a fixed number of field pulses, frequencies of 40 Hz were optimal for somatic Ca2+ increases. Our studies suggest that the opening of intracellular Ca2+ release channels plays a crucial part in shaping the action potential-induced neuronal Ca2+ response.
منابع مشابه
Calcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons.
Calcium-induced calcium release (CICR) is a mechanism by which local elevations of intracellular calcium (Ca2+) are amplified by Ca2+ release from ryanodine-sensitive Ca2+ stores. CICR is known to be coupled to Ca2+ entry in skeletal muscle, cardiac muscle, and peripheral neurons, but no evidence suggests that such coupling occurs in central neurons during the firing of action potentials. Using...
متن کاملOptogenetics: Control of Brain Using Light
Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit....
متن کاملCa2+ influx, but not Ca2+ release from internal stores, is required for the PACAP-induced increase in excitability in guinea pig intracardiac neurons.
Mechanisms modulating the pituitary adenylate cyclase activating polypeptide (PACAP)-induced increase in excitability have been studied using dissociated guinea pig intrinsic cardiac neurons and intact ganglion preparations. Measurements of intracellular calcium (Ca2+) with the fluorescent Ca2+ indicator dye fluo-3 indicated that neither PACAP nor vasoactive intestinal polypeptide (VIP) at eith...
متن کاملP30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain
Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...
متن کاملSynergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials
Increases in postsynaptic [Ca2+]i can result from Ca2+ entry through ligand-gated channels or voltage-gated Ca2+ channels, or through release from intracellular stores. Most attention has focused on entry through the N-methyl-D-aspartate (NMDA) receptor in causing [Ca2+]i increases since this pathway requires both presynaptic stimulation and postsynaptic depolarization, making it a central comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 11 شماره
صفحات -
تاریخ انتشار 1997